Overview of Advanced LIGO and future methods of noise reduction Isabelle Phinney and Bárbara Cruvinel Santiago Massachusetts Institute of Technology Department of Physics, Cambridge, MA

The LIGO interferometers

Fig. 1 – Simplified interferometer diagram [1].

- 2 Michelson Interferometers (in Louisiana and Washington).
- Mirrors of 40 kg each.
- Arms of 4 km.
- aLIGO target: input power of 125 W (~1 MW circulating).
- Limited by quantum shot noise.
- Current strain sensitivity of 10⁻²¹ Hz⁻² at 100 Hz.
- Spectrum shown is at 25 W and is shot noise limited above ~150 Hz.

First detection

- Binary black hole merger detected by Advanced LIGO on 09/14/2015.
- Resulting black hole of over 60 solar masses.
- Both signals are matched accounting for GW travel time between interferometers and the relative positioning of both.
- Signal goes through template matching.
- 2017 Physics Nobel Prize awarded to Rainer Weiss (MIT), Kip Thorne (Caltech) and Barry Barish (Caltech) for this detection.

Subsequent detections Black Holes of Known Mass

Fig. 3 – List of black hole merger detections (left) [2] and signal from first detection with Virgo (right) [3], which allows for better sky localization of GW source.

Fig. 4 – Sky localization based on LIGO (blue) and Virgo (green) binary neutron star merger detections [4].

- 1st binary neutron star merger detection 3 days after 1st detection with Virgo. [4]
- Having LIGO and Virgo allowed for better localization of the GW source.
- An alert was sent to dozens of collaborations that had follow-up observations of the source across the electromagnetic spectrum. Beginning of multi-messenger
- astronomy.

- In-vacuum OPO cavity used to generate squeezed light.
- Complications: must be vacuum-compliant, overall noise must be very small in order to see sub-quantum limit benefit.
- Squeezed light from parametric down conversion (PDC) + cavity.
- Nonlinear crystal (PPKTP) down-converts a 532nm photon to two phaseentangled 1064nm photons.
- Cavity enhances effects of crystal through multiple passes.
- Phase-lock H1 (main) laser to pump laser of OPO, and inject squeezed vacuum into dark port \rightarrow overall reduction in phase noise.

yet-1611201723/ (2017).

116, 061102 (2016).

119, 141101 (2017).

[4] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett. 119, 161101 (2017).

[5] R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam, "Quantum metrology for gravitational wave astronomy," Nature communications 1, 121 (2010).

In collaboration with LSC and Virgo

Optomechanics and squeezing

Fig. 7 – Diagram of optomechanical squeezing experiment. Credits for figure and information: Nancy Aggarwal, Robert Lanza, and Adam Libson.

- Squeezing in audio frequencies.
- Does not depend on laser wavelength.
- Optical fibers couple light to squeezer.
- Fiber mirror and micromechanical mirrors on a cantilever form an optical cavity.
- Can measure radiation pressure effects.

Noise reduction in the lab tabletop setup

Characterizing noise and

We collected noise and transfer function data from the setup and PDs.

Simulating performance

We wrote a program in MATLAB that predicted the noise reduction using the ISS based on the collected data and different instrument

Implementing the ISS

Using the best PD, a fiber amplitude modulator and a signal amplifier, we are now implementing the

Fig. 8 – PD transfer functions (top), predicted ISS performance (center), ISS setup (bottom).

Acknowledgements

We acknowledge the support of the MIT-LIGO group, especially Professor Nergis Mavalvala and Professor Matt Evans' groups, and of the LIGO and Virgo Collaborations. LIGO is funded by the National Science Foundation.

References

[1] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett.

[2] Sky & Telescope. LIGO sees smallest black hole binary yet. Available at http:// www.skyandtelescope.com/astronomy-news/ligo-sees-smallest-black-hole-binary-

[3] B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett.